fonksiyon ornek sorular , limit ornek soru cozumleri , matematik konu anlatimlari , fonksiyon sesli konu anlatimi , fonksiyon soru cozum , fonksiyon örnek sorular , matematik soru cozum videosu , matematik matrix , matematik konu anlatimi logaritma ornek soru cozumleri , matematik konu anlatimlari ve soru cozumleri , matematik ornek sorular videosu , matematik konu videolari , zor türev soru ve çözümleri , logartma , logaritma örnek soru çözümleri , matris soru çözümleri , matematik matrix sorular , zor fonksiyon sorulari ve cozumleri , matematik diziler konusu soru çözümleri , fonksiyon çözümleri , ozel tanimli fonksiyonlar soru cozumleri , zor matematik sorulari ve cozumleri , limit ile ilgili videolu soru cozumleri , matematik video konu anlatimlari , ucretsiz matematik video , ucretsiz matemetik cozumleri , özel tanimli fonksiyonlarin integrali , fonksiyonlar ornek cozumleri , ucretsiz konu anlatimlari , fonksiyon soru ve çözümleri , 2 dereceden denklemler cozumleri video , matriks konusu , matematik fonksiyonlar ornek , videolu fonksiyon sorulari , matematik konulari konu anlatimlari , ucretsiz matematik fonksiyonlar konusu , trigonometri örnek soru çözümleri , matematik fonksiyonlar konusu video indir , logaritma ornek sorular , fonksiyonlar soru cozum videosu , fonksiyonlar ornek sorular , matematik ornek fonksiyon sorulari , polinomlarla ilgili soru çözümleri videolu , matematik fonksiyon ornekleri , fonksiyonlar zor sorular videolu konu anlatimi , özel soru çözüm matematik , fonksiyonlarin soru çözümleri , mat 2 matris çözümleri , özel tanimli fonksiyonlar örnek cozumleri , video konu anlatimlari ,

FONKSİYON

TANIM:


A ve B gibi boş olmayan iki küme için tanımlanan bir bağıntı f olsun. f bağıntısı A nın her elemanı B nin yalnız bir elemanına eşliyor ve A da eşlenmeyen eleman kalmıyorsa A dan B ye tanımlanan bu f bağıntısına, A dan B ye fonksiyon denir.

f
A B




xA, yB ve A dan B ye fonksiyonu x’i y’ye eşliyorsa

f =A B
x f(x)=y şeklinde gösterilir.

A = Tanım kümesi
B= Değer kümesi

x’e değişken, y’ye (y=f(x)) x’in f fonksiyonuna göre görüntüsü yada f fonksiyonunun x için aldığı değer denir.
A tanım kümesinin tüm elemanlarının f fonksiyonuna göre görüntülerinin kümesine A nın görüntü kümesi denir. Ve f(A) ile gösterilir. f(A)B’ dir.

ÖRNEK: A={-3,-1,0,2,3}
F=A R fonksiyonu
F{(-3,5),(-1,2),(0,3),(2,5),(3,-4)} olarak veriliyor.
F(-3)+f(0)+f(3) toplamı nedir?

A)0 B)2 C)3 D)4 E)5

ÇÖZÜM:

f(-3)= 5 f(-3)+f(0)+f(3)=5+3-4=4 olur.
f(0)= 3 olduğundan
f(3)=-4 Cevap

FONKSİYON TÜRLERİ:

BİRE BİR FONKSİYON
TANIM:
A dan B ye bir f fonksiyonu tanımlanmış olsun A kümesinin birbirinden farklı her x1 ve x2 elemanları için; f(x1)f (x2) ise f fonksiyonuna, bire bir fonksiyon denir. Yani A tanım kümesinin farklı elemanlarının görüntüleri daima farklı ise f fonksiyonu bire bir fonksiyondur. Kısacası

x1 ,x2 A için, x1  x2  f(x1)  f(x2) ya da f(x)1 = f(x2)  x1 = x2 oluyorsa, f fonksiyonu bire bir fonksiyondur.




A f B f
A A B






f: A B birebir fonksiyon g: A B birebir fonksiyon




y
h(x)=y=2x
4
3
2
1
0 1 2 3 x
-1
-1

-2
h

h:R R, h(x)=2x
bire bir fonksiyondur
ÖRTEN FONKSİYON
TANIM:
f:A B fonksiyonu verilsin. f(A)=B ise f ye örten fonksiyon denir. Değer kümesinde eşlenmeyen eleman kalmıyorsa, f fonksiyonu örtendir. Örten fonksiyonda
 y  B için f(x)=y olacak şekilde en az bir xA vardır.
f:A B fonksiyonun örten olabilmesi için s(A)  s(B) olmalıdır.


A f B





f:A B örten fonksiyon


İÇİNE FONKSİYON
TANIM:
f:A B fonksiyonu için f(A)B ise yani, değer kümesinde eşlenmeyen en az bir eleman kalıyorsa, f fonksiyonuna, içine fonksiyon denir.


A g B






g:A B içine fonksiyon

BİRE BİR VE İÇİNE FONKSİYON
TANIM:
f:A B fonksiyonu hem birebir hem de içine fonksiyon ise f fonksiyonuna, bire bir ve iççine fonksiyon denir.

A f B f:A B fonksiyonunda farklı
elemanların görüntüleri de farklı
ve f(A)B olduğundan, f fonksiyonu
birebir ve içine fonksiyondur.


BİRE BİR VE ÖRTEN FONKSİYON
TANIM:
f:A B fonksiyonu hem birebir hem de örten fonksiyon ise f fonksiyonuna, bire bir ve örten fonksiyon denir.

A g B
g:A B fonksiyonunda farklı
elemanların görüntüleri de farklı ve
g(A)=B olduğundan, g fonksiyonu bire bir ve
örten fonksiyondur.



SABİT FONSİYON
TANIM:
f:A B fonksiyonu (x)A için f(x)=c oluyorsa f fonksiyonuna sabit fonksiyon denir.

A f B







TERS FONKSİYON
A f B Yandaki şemada A dan b ye verilen f
fonksiyonunun
g={(a,1),(b,3),(c,2),(d,4)} olduğunu söyleyebiliriz.
g fonksiyonu bir bağıntı olduğu için tersi vardır ve
g-1 ={(1,a),(2,c),(3,b),(4,d)} dir.


TANIM:
f, A dan B ye bire bir ve örten fonksiyon ise f-1 bağıntısı da B den A ya bir fonksiyondur. f-1 fonksiyonuna f in ters fonksiyonu denir.

A B dir.






CEVAPLI SORULAR

1) f A dan B ye bir fonksiyon, x x2 fonksiyonunun bire bir midir?

CEVAP:
f(-2) = (-2)2 = 4
f(2) =22 = 4 olduğundan, -2  2  f(-2) = f(2) olur yani verilen fonksiyon bire bir değildir.


2) A ={ -1, 0,1 } ve b={ 0,1 }kümeleri için f A dan B ye bir fonksiyon f(x) = x2
fonksiyonunun örten olmadığını araştırınız.

CEVAP:
f(-1) = 1
f(0) = 0  f(A) = {0,1} dır.
f(1) =1

f(A) = B olduğundan f örtendir.


3) A = {-1, 0,1,2,3} ve B = {0,1,2,34,5,10} kümeleri veriliyor. f(x) = x2 + 1 fonksiyonu içine bir fonksiyon mudur? ( f; A dan B ye bir fonksiyon)

CEVAP:
f(-1) = (-1)2 + 1 = 2
f(0) = 02 +1 = 1
f(1) = 12 + 1 = 2
f(2) = 22 + 1 = 5
f(3) = 32 + 1 = 10
f(A) = { 1,2,5,10}  B olduğundan, f içine fonksiyondur.


4) f : R [2 +  ] f(x) = x2 + 2 bire bir ve örten midir? x  0

CEVAP:
f(0) = 02 +2 = 2 Örtendir -1  1
x1  x2 için f(x1)  f(x2) f(-1) = f(1)
f(-1) = (-1)2 + 2 = 3
f(1) = 12 +2 = 3 Birebir değil

5) f : R R f(x) = ( a-2 ) . x2 + ( b+3 )x + 7 sabit fonksiyon ise a – b +f(x)=?


CEVAP:
f(x) = c olduğundan
f(x) = ( a - 2 ) . x2 + ( b + 3 ) . x +7
0 0
a–2 = 0 b+3 = 0
a = 2 b = -3
f(x) = 7 a + b + f(x) = 2+3+7 = 12

6) f :R R , f(x) = x3 – 4x +2 olduğuna göre f-1(2) nedir?

CEVAP:
f-1(2) = x  f(x) = 2


 x3 – 4x +2 = 2
 x3 – 4x = 0
 x( x2 – 4 ) = 0
 x = 0, x = 2, x = -2
f-1(2) = { -2, 0 ,2 } bulunur.

7) f : R-{-1} R, f(x) = x2 – 3x + 2 olduğuna göre, f-1(6) nedir?

CEVAP:
f-1(6) = x  f(x) = 6
 x2 –3x + 2 = 6
 x2 –3x –4 = 0
 ( x-4 ) (x + 1 ) = 0
 x = 4, x = -1
x = -1 sayısı tanım kümesinin elemanı olmadığı için f-1(6) = 4

...alıntıdır...


Tek ve çift fonksiyonlar :

Tanımlı olan tüm x değerleri için f (-x) = -f (x) oluyorsa tek ;
f (-x) = f (x) oluyorsa çift fonksiyon denir.

Diğer bir deyişle

başlangıç noktasına (0,0) göre simetrik fonksiyonlar tek ;
y eksine göre simetrik fonksiyonlar çift fonksiyondur.

Örnek 36:
f(x) = sinx +3x -x3 fonksiyonu tek mi çift midir ?
Çözüm : f (-x) = sin (-x) + 3(-x) -(-x)3
= -sinx -3x +x3
= -(sinx +3x -x3)
= -f(x) olduğundan tek fonksiyondur.

Örnek 37: f(x) = x2 + 4 -cosx fonksiyonu tek mi çift midir ?
Çözüm : f(-x) = (-x)2 + 4 -cos(-x)
= x2 + 4 -cosx
= f(x) olduğundan çift fonksiyondur.
Örnek 38: f(x) = x2 + x3 -3 fonksiyonu tek mi çift midir ?
Çözüm : f(-x) = (-x)2 + (-x)3 -3
= x2 - x3 -3 olduğundan ne tek ne de çift fonksiyondur.

Örnek 39: f(x) = 0 fonksiyonu tek mi çift midir ?
Çözüm : f (-x) = f(x) = -f(x) = 0
olduğundan fonksiyon hem tek hem de çifttir.
Diğer bir deyişle f(x)=0 fonksiyonu yani x ekseni
hem başlangıç noktası hem de y eksenine göre simetriktir.

Örnek 40: 2f(x) - x -2 = f(-x) fonksiyonu çift olduğuna göre f (x) fonksiyonunu bulunuz.
Çözüm : Çift fonksiyon olduğundan f(x) = f(-x) olur.
Dolayısıyla 2f(x) - x -2 = f(x) olacağından f(x) = x+2 olur.

Periyodik fonksiyonlar :

Eğer bir f(x) fonksiyonunda f (x) = f (x+t) olacak şekilde bir t gerçek sayısı bulunuyorsa f (x) fonksiyonu periyodiktir.
Buradaki t sayısına da o fonksiyonun periyodu denir.
Diğer bir deyişle periyodu t olan bir fonksiyonda
f(x+t) = f(x) ==> ( x+t ) - x = t olur.

Örnek 41: f (x) = g ( 2x+3 ) ile tanımlı iki periyodik fonksiyondan g (x) fonksiyonunun periyodu 5 ‘ tir. Buna göre f(x) fonksiyonunun periyodu nedir ?
Çözüm : f (x) fonksiyonunun periyoduna t dersek f(x+t) = f(x) olmalıdır.
Dolayısı ile g ( 2x+2t +3) = g( 2x+3) ve
( 2x+2t +3) - ( 2x+3) = 5 olmalıdır
( çünkü g (x) fonksiyonunun periyodu 5 )
buradan t = 5/2 bulunur.
f (x) fonksiyonunun periyodu t ise
f (ax+b) fonksiyonunun periyodu olur.
Buna göre g (x) fonksiyonu için t=5 olduğuna göre
g ( 2x+3) fonksiyonunun periyodu da 5/2 ‘dir de diyebilirdik.
f(x) ve g(x) gibi iki fonksiyonunun periyotları t1 ve t2 ise bu iki fonksiyonun toplam veya farklarının periyotları OKEK(t1 , t2 ) olur. Çarpım veya bölümlerinin periyotları ise bu fonksiyonları toplam veya fark formuna çevirerek bulunur.
Örnek 42 : f(x) fonksiyonunun periyodu 3,
g(x) fonksiyonunun periyodu 4 ise
h(x) = f (3x+5)-g(2x+7) fonksiyonunun periyodu nedir ?
Çözüm : f (3x+5) fonksiyonunun periyodu 3/3 = 1 ve g(2x+7) fonksiyonunun periyodu 4/2 = 2 olduğundan h(x) fonksiyonunun periyodu OKEK(1,2) = 2 olur.

Trigonometrik fonksiyonlardan

sin x ve cos x fonksiyonlarının periyotları 2 ;
tanx ve cotx fonksiyonlarının periyotları ise  ‘dir.
Örnek 43 : f (x) = cos(2x-3) + sin (4x-5) ise f(x) fonksiyonunun periyodu nedir ?
Çözüm : cos(2x-3) fonksiyonunun periyodu ve
sin (4x-5) fonksiyonunun periyodu olduğundan
f (x) fonksiyonunun periyodu ikisinin OKEK’i olan  ‘ dir.
Örnek 44 : f (x) = 6sin5xcos3x -5 fonksiyonunun periyodu nedir ?
Çözüm : Ters dönüşüm formullerinden yararlanarak buluruz.
Dolayısıyla f (x) = 3sin 8x +3sin 2x -5 olacağından ;
sin 8x fonksiyonunun periyodu ve
sin 2x fonksiyonunun periyodu ise olur.
f (x) fonksiyonunun periyodu da OKEK ( olur.
Örnek 45 : f(x) = 3sin25x +2 fonksiyonunun periyodu nedir ?
Çözüm : cos 2x = 1-2sin2x olduğundan
olur.
Bu nedenle olur.
f(x) fonksiyonu da
olacağından periyodu da bulunur.
Sinkax ve coskax fonksiyonlarının periyotları k sayısı çift ise ,
k sayısı tek ise ;
tankax ve cotkax fonksiyonlarının periyotları
k sayısı ne olursa olsun ‘dır.
Buna göre aynı soru k =2 olduğundan bu bilgileri kullanarak ’ dir de diyebiliriz .
Fonksiyonların toplamı,farkı, çarpımı,bölümü :
f (x) ve g (x) fonksiyonları için
h (x) = ( f + g ) (x) = f (x) + g (x) fonksiyonuna toplam fonksiyonu ;
h (x) = ( f - g ) (x) = f (x) - g (x) fonksiyonuna fark fonksiyonu ;
h (x) = ( f . g ) (x) = f (x) . g (x) fonksiyonuna çarpım fonksiyonu ;
h (x) = ( f / g ) (x) = f (x) / g (x) fonksiyonuna bölüm fonksiyonu denir.
Burada dikkat edilmesi gereken noktalardan
birincisi h (x) fonksiyonunun tanım kümesi
f ve g fonksiyonlarının tanım kümelerinin kesişim kümesidir , ikincisi ise fonksiyonlar üzerinde tanımlanan işlemler fonksiyonların görüntü kümeleri üzerinde yapılacaktır.
Örnek 46 : f (x) = 3x+5 fonksiyonu için tanım kümesi A = {-1,1,2,3} ve g (x) = 2x-3 fonksiyonu için tanım kümesi B = {-1,2,3,4} olduğuna göre h (x) = (f+g)(x) fonksiyonunun tanım ve değer kümelerini bulunuz.
Çözüm : Tanım kümesi = A  B = {-1,2,3} olur.
h (x) = (3x+5) + (2x-3) = 5x+2 olduğundan
h (-1) = -3
h ( 2) = 12
h (3) = 17 olur ve değer kümesi de G = {-3,12,17} şeklinde bulunur.
Örnek 47 : f : A  B , f (x) = {(1,2),(2,3),(3,4)} ve
g : C  D , C = {1,2,3} ,g (x) = x+1 olduğuna göre
h (x) = 2f(x)+3g(x) fonksiyonunun değer kümesini bulunuz .
Çözüm : Fonksiyonlar incelendiğinde eşit fonksiyon oldukları görülmektedir. Dolayısı ile h (x) = 5f (x) diye düşünülebilir.
h (1) = 5f (1) = 10 ;
h (2) = 5f (2) = 15 ;
h (3) = 5f (3) = 20 olduğundan değer kümesi ={10,15,20} olarak bulunur